
PL Mechanisms for
Security Engineering

Dan Wallach

Rice University

Previous talk

Broad architectural ideas
Separation of privilege

Least privilege

Narrow interfaces

Software engineering processes

Today: using Java (or C#) mechanisms

Type safety is your friend
C / C++ problems:

Buffer overflows
Cross-site scripting
Denial of service
File corruption
Format string
vulnerabilities
Improper bounds
checking
Insecure access control
Integer overflows
Memory corruption
Out-of-bounds array
access
Privilege escalations
SQL injection

Java / C# problems:

Cross-site scripting
Denial of service

Insecure access control

Privilege escalations
SQL injection

Cool Java features

No need to free / delete memory
Garbage collector does all the hard work

Memory leaks still possible

Access modifiers (public, private, …) are
enforced

Arrays are bounds checked

Easy to have extensibility (e.g., applets)
with security controls

Similar features in other safe languages (C#)

Capability-based design

Having a Java object reference

Permission to invoke methods on it

Least privilege via capabilities
Control access to dangerous primitives

Pass different capabilities to different modules

Comparable to using “factory patterns”

Classic Java style …

InputStream is = new FileInputStream(“foo”);

Capability style …
FileSystemCapability fsc;

InputStream is = fsc.openFile(“foo”);

How do you get capability instance?

What about the static constructor?

Getting the capability instance

Need to change the initial interface

interface RunnableCapability {

public void run(FileSystemCapability fsc,

NetworkCapability nc,

…);

}

Pass capabilities or store them in static vars

Capability-style: why bother?
Embrace and extend! Wrappers can delegate to internal capabilities.

public class SingleUseFSCapability extends FileSystemCapability {
private FileSystemCapability fsc;
private boolean valid = true;

public SingleUseFSCapability(FileSystemCapability fsc) {
this.fsc = fsc;

}

public InputStream openFile(String name) {
if(!valid) throw new SecurityException(…);
valid = false;
return fsc.openFile(name);

}

public invalidate() { fsc = null; }

Capability uses

File system
Restricted subdirectories / visibility

Restricted file sizes

Networks
Restricted connection destination

Restricted bandwidth

Transparent SSL

User operations

Database operations

Banning the static constructors

Simple grep rules on source code
No imports of java.io.*
Hand-audit of any reflection calls

In a “pure” capability system
No “public static” variables
Only operations available from capabilities
Capabilities represent your privileges
No other security checks necessary
Classic issue: capability leakage

Embraces the principle of least privilege

Distributed capabilities

Assign each capability a 128-bit random
number (it’s “name”)

Warning: use cryptographically strong RNG

Mapping from names to capabilities

Web cookies, session IDs, etc.
Login module creates per-user capabilities

Web page generator easily restricted

Expiration, other features, easy to do

Duff’s Law (redux)

E Programming Language
Somewhat like Python in syntax

Runs on the JVM

www.erights.org

Excellent discussion of other issues with
capability-style software engineering

Java capability limits

No way to control CPU or memory use
You could restrict use of new operations

No way to kill an errant computation
You could invalidate its capabilities

Legacy code
Need other mechanisms

Netscape 2.0 insecurity

Java trusts DNS
Internet hosts can have multiple IP addresses

Java host equality test is too lenient

With a hacked DNS server
Two-way channel to any machine on the
Internet

Applets can connect to machines behind a
firewall

Exploit numerous Unix and Windows bugs

Talk to internal Web and mail servers

Netscape DNS attack

attacker.comattacker.comvictim.orgvictim.org

User
DNS

Web proxy

Internal mail
server

Firew
all

applet
applet

DNS

Web server

hostname lookup
hostname lookup

applet exploits sendmail bug
runs arbitrary C code

Mail server
information leak

The DNS attack allows connections to any machine behind the firewall.
Joint work with Dean and Felten (1996)

Trusted mail
server

Solutions possible?

Capability-style: Applets shouldn’t have
access to the “real” java.net classes.

(But the Applet APIs were already frozen.)

Actual solution: Try to figure out “who” is
calling and behave differently.

Related problem: file access

Some parts of Java need
the file system!

URL file cache

Class dynamic loader

Secure services
Use dangerous
primitives

Export safe interfaces

How to decide if an
operation should be
allowed?

File System

URL

HotJava Browser

Applet

nono

maybemaybe yesyes

Handling the “maybe” cases
Dangerous actions
should be forbidden
unless explicitly
allowed

principle of least
privilege

fail-safe
File.open(“cache/XQ45Z9”)

URL.open(“http://foo.com”)

Applet()

File.open(“/etc/passwd”)

URL.open(“file://etc/passwd”)

Applet()

File.open(“/etc/passwd”)

Applet()

Solution: Stack inspection

Code must explicitly authorize a
dangerous action

A method enables its privileges
Privileges revert when the method returns

Standard Java / JavaScript / C# feature
Invented at Netscape

File.open(“cache/XQ45Z9”)

URL.open(“http://foo.com”)

Applet()

I need privileges!

How stack inspection works

What if the URL code wants to use a file cache?

URL.open(“http://foo.com”)

Applet()Applet

System

File.open(“cache/XQ45Z9”)System

How stack inspection works

First, enable privileges...

URL.open(“http://foo.com”)

Applet()Applet

System

doPrivileged(…)System

How stack inspection works
… which calls into whatever you want
(typically an anonymous inner class)

URL.open(“http://foo.com”)

Applet()Applet

System

doPrivileged(…)System

URL.helper(…)System

File.open(“cache/XQ45Z9”)System

How stack inspection works
… then searches for the doPrivileged() frame

URL.open(“http://foo.com”)

Applet()Applet

System

doPrivileged(…)System

URL.helper(…)System

File.open(“cache/XQ45Z9”)System

SecurityManager.check(…)System

How stack inspection works
… if they’re all privileged, then the operation is allowed

URL.open(“http://foo.com”)

Applet()Applet

System

doPrivileged(…)System

URL.helper(…)System

File.open(“cache/XQ45Z9”)System

SecurityManager.check(…)System

How stack inspection works
… if not, then is the applet privileged?

URL.open(“file://etc/passwd”)

Applet()Applet

System

File.open(“/etc/passwd”)System

SecurityManager.check(…)System

Using stack inspection yourself

Code signing / secure class loader can
assign principals to each class
Elaborate policy specification language
Reduces size of trusted computing base

You must still audit all doPrivileged() calls
Preferably placed close to where priv needed

Typically mixed with capability-style
Stack inspection check to open a file
InputStream object acts as a capability
Significant performance improvement

Other desired features

Memory management / limits

CPU scheduling / priorities

Termination

Java “isolates”

JSR-121 “Application Isolation API Spec

Tech details: see Czajkowski et al. “MVM”
Java isolate == Unix process

Java link == Unix pipe

Monitoring, termination, security
managers

No guarantees about scheduling, memory

javax.isolate package (not yet part of J2SE)
MIDP 2.0 (J2ME) has early implementation

Java resource consumption

JSR-284 “Resource Consumption Mgmt. API”

Control heap memory, CPU, etc.

Currently “in progress”, draft API available

See also, JSR-278 “Resource Mgmt API for
Java ME”

What you can do today

Separate JVMs in separate processes

Consumes more memory
Limits on max transactions

Slower startup time
Maybe hide latency by pre-starting JVMs

Excellent fault isolation
Standard OS tools

Similar issues: CGI vs. FastCGI

Research on Java termination

Wish to terminate Java task running on the
system

Without destabilizing the system

Without the task ignoring the kill signal

With minimal changes to the task

Task: Coherent set of related classes from
the same source

Relevant publications

Soft termination
ACM Transactions on Information and
Systems Security (2002)

Transactional rollback
International Conference on Dependable
Systems and Networks (2002)

GC-based memory accounting
IEEE Security and Privacy (2003)

Joint work with Algis Rudys, David Price,

and John Clements

Termination possibilities

Naïve termination
Blindly throw an asynchronous exception

Deschedule a thread (Thread.stop() in Java)

“Hard termination”
Same as Unix processes or Java isolates

Naïve termination

User code can simply catch the exception

Might destabilize the system
Violating system invariants

system_list_insert(node n) {
. . .
n.next = l.first;
l.first = n;

l.counter++;
. . .

}

Exception arrives here

Naïve termination: Which thread?

Task threads can spawn other threads

System threads calling into the task can be
hijacked

Object.finalize() to hijack GC thread

Don’t kill threads, disable tasks

Soft termination: Our goals

Portability
Run without modifying language runtime

Reasonable performance
Don’t interfere with the optimizer

Well-defined semantics
Effect of termination signal is clear

Preserve system code invariants

Soft termination: Design

Inspiration: “Safe points”
Used in language runtime systems for years

Wherever the code acts to extend its
running time, check termination flag first

Code-to-code transformation
User code instrumented to perform check

User code terminates itself

System code is not rewritten, only user
code

The basic case

An infinite loop

foo() {
. . .

foo();
}

Insert termination checks

Rewrite code to perform a termination
check before each function call

foo() {
. . .
if (termination_flag)
throw exception;

foo();
}

Fun implementation issues

Blocking calls
Some calls not guaranteed to return

Weird Java control flows
Switch statements

Exception handlers

System code with state
Avoid breaking invariants on system state

Optimizations
Don’t do checks if you can prove termination
would happen anyway

Java blocking functions

Java blocking functions are:
I/O functions

Java synchronization functions

Cannot directly apply model
Assumes we have “equivalent” non-blocking
functions

Java blocking calls: Solution

All Java blocking calls are native
Easy to find by searching Java API source

Can simulate non-blocking with
Thread.interrupt()

Causes all blocking calls to throw Java
exception

Part of blocking function APIs – callers
required to handle

Expected behavior

Which threads to interrupt?

Wrapper registers the current thread
Maps current thread to task on behalf of
which it is blocking

If task is terminated, thread is interrupted

wrapper_bar() {
register_blocking(// Uses stack inspection
Thread.currentThread());

blocking_bar();
unregister_blocking(
Thread.currentThread());

}

Implementation

2732 lines of Java source

Uses JOIE, IBM CFParse classfile
manipulation libraries

Used bytecode transformation exclusively

Prototype available for Tomcat Servlets
www.cs.rice.edu/~arudys/software/

Further extensions: rollback

It would be nice to restart a task after you
kill it
Inspiration: transactional database
rollback/recovery
Making backup copies for undo is
expensive!

6x – 24x slowdown on benchmarks

Optimizations help, but overhead still
unacceptable (may require JVM changes)
Details: see our paper (DSN 2002)

Memory overuse / abuse

Possible to hold live significant memory

Attacker or broken task can:
At worst: crash the VM

At best: cause thrashing and poor
performance

We want to manage memory better

Stopping memory overuse

Can solve this problem if we can:
Measure memory usage

Identify policy violators

Constrain/terminate them

Our work: measuring memory usage
without giving up sharing benefits of a
language-based system

Measuring memory

How can we determine how much memory
a task is using?

Very easy in a traditional OS model
Just measure allocated heap

Kernel

A B C

Harder with a shared heap

No clean boundaries

Memory shared across tasks

A B C

Idea: graph traversal

Defining memory usage: Traverse the graph
created by heap memory and measure
what we find reachable

A B C

Use the garbage collector

Start with roots for first task

Find and count reachable memory

Repeat for all tasks

Don’t double-count

A B C
1 2 3

Shared memory

Memory could be held live by multiple
tasks

Charged to the first such task scanned

First task: upper bound, last task: lower
bound

A B C
1 2 3

Finding shared memory

Reorder the processing of tasks on each GC

Update upper/lower bounds

We get a statistical picture of each task’s
sharing with others

A B C
3 1 2

Advantages of GC approach

Measurements happen when we want
them most

When memory pressure goes up, so does
measurement frequency

Can force measurement whenever desired at
cost of additional collection

Rotation of roots gives upper/lower
bounds on shared data

Advantages of GC approach

Measurement is transparent to tasks

General approach: works in any language
runtime with a suitable garbage collector

Implemented as a tweak of already-
existing behavior

Policy implications

When do we decide that a task is
misbehaving?

System-specific decision

Consuming lots of unshared memory
Holding too much memory live
Sudden increase in usage

May serve as warning, pay more attention to
this task in the future

Implementation

We implemented our system in Java
IBM JikesTM Research Virtual Machine (RVM),
version 2.1.0

1000-line patch covering 2 garbage collectors

Defined tasks on a ClassLoader basis
Other definitions possible

Performance overhead generally < 5%
Free ride on the garbage collector

Details: see our paper (Oakland 2003)

Summary

Secure services / least privilege
Capability-style or stack inspection

Termination
OS processes, isolates, or soft termination

Memory management
OS processes, GC modifications

	PL Mechanisms for Security Engineering
	Previous talk
	Type safety is your friend
	Cool Java features
	Capability-based design
	Classic Java style …
	Getting the capability instance
	Capability-style: why bother?
	Capability uses
	Banning the static constructors
	Distributed capabilities
	Duff’s Law (redux)
	Java capability limits
	Netscape 2.0 insecurity
	Netscape DNS attack
	Solutions possible?
	Related problem: file access
	Handling the “maybe” cases
	Solution: Stack inspection
	How stack inspection works
	How stack inspection works
	How stack inspection works
	How stack inspection works
	How stack inspection works
	How stack inspection works
	Using stack inspection yourself
	Other desired features
	Java “isolates”
	Java resource consumption
	What you can do today
	Research on Java termination
	Relevant publications
	Termination possibilities
	Naïve termination
	Naïve termination: Which thread?
	Soft termination: Our goals
	Soft termination: Design
	The basic case
	Insert termination checks
	Fun implementation issues
	Java blocking functions
	Java blocking calls: Solution
	Which threads to interrupt?
	Implementation
	Further extensions: rollback
	Memory overuse / abuse
	Stopping memory overuse
	Measuring memory
	Harder with a shared heap
	Idea: graph traversal
	Use the garbage collector
	Shared memory
	Finding shared memory
	Advantages of GC approach
	Advantages of GC approach
	Policy implications
	Implementation
	Summary

